Nuprl Lemma : page55'
∀[U:Type]. ∀[P,Q:U ⟶ ℙ].  ∀f:∀x:U. (P[x] 
⇒ Q[x]). ∀g:∀x:U. P[x]. ∀x:U.  Q[x]
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[U:Type].  \mforall{}[P,Q:U  {}\mrightarrow{}  \mBbbP{}].    \mforall{}f:\mforall{}x:U.  (P[x]  {}\mRightarrow{}  Q[x]).  \mforall{}g:\mforall{}x:U.  P[x].  \mforall{}x:U.    Q[x]
Date html generated:
2016_05_15-PM-07_42_35
Last ObjectModification:
2015_12_27-AM-11_13_07
Theory : general
Home
Index