Nuprl Lemma : page55-again

U:Type. ∀P,Q:U ⟶ ℙ.  ((∀x:U. ((P x)  (Q x)))  (∀x:U. (P x))  (∀x:U. (Q x)))


Proof




Definitions occuring in Statement :  prop: all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesis functionEquality because_Cache cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}U:Type.  \mforall{}P,Q:U  {}\mrightarrow{}  \mBbbP{}.    ((\mforall{}x:U.  ((P  x)  {}\mRightarrow{}  (Q  x)))  {}\mRightarrow{}  (\mforall{}x:U.  (P  x))  {}\mRightarrow{}  (\mforall{}x:U.  (Q  x)))



Date html generated: 2016_05_15-PM-07_42_18
Last ObjectModification: 2015_12_27-AM-11_13_53

Theory : general


Home Index