Nuprl Lemma : peval-unroll

[z,v0:Top].  (peval(v0;z) extend-val(v0;fix((λ%,a. extend-val(v0;%;a)));z))


Proof




Definitions occuring in Statement :  peval: peval(v0;x) extend-val: extend-val(v0;g;x) uall: [x:A]. B[x] top: Top fix: fix(F) lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T peval: peval(v0;x) valuation-exists-ext
Lemmas referenced :  valuation-exists-ext top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom lemma_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[z,v0:Top].    (peval(v0;z)  \msim{}  extend-val(v0;fix((\mlambda{}\%,a.  extend-val(v0;\%;a)));z))



Date html generated: 2016_05_15-PM-07_18_02
Last ObjectModification: 2015_12_27-AM-11_28_29

Theory : general


Home Index