Nuprl Lemma : peval-unroll
∀[z,v0:Top].  (peval(v0;z) ~ extend-val(v0;fix((λ%,a. extend-val(v0;%;a)));z))
Proof
Definitions occuring in Statement : 
peval: peval(v0;x)
, 
extend-val: extend-val(v0;g;x)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
fix: fix(F)
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
peval: peval(v0;x)
, 
valuation-exists-ext
Lemmas referenced : 
valuation-exists-ext, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
sqequalAxiom, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[z,v0:Top].    (peval(v0;z)  \msim{}  extend-val(v0;fix((\mlambda{}\%,a.  extend-val(v0;\%;a)));z))
Date html generated:
2016_05_15-PM-07_18_02
Last ObjectModification:
2015_12_27-AM-11_28_29
Theory : general
Home
Index