Nuprl Lemma : peval-unroll
∀[z,v0:Top]. (peval(v0;z) ~ extend-val(v0;fix((λ%,a. extend-val(v0;%;a)));z))
Proof
Definitions occuring in Statement :
peval: peval(v0;x)
,
extend-val: extend-val(v0;g;x)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
fix: fix(F)
,
lambda: λx.A[x]
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
peval: peval(v0;x)
,
valuation-exists-ext
Lemmas referenced :
valuation-exists-ext,
top_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
sqequalAxiom,
lemma_by_obid,
sqequalRule,
sqequalHypSubstitution,
isect_memberEquality,
isectElimination,
thin,
hypothesisEquality,
because_Cache
Latex:
\mforall{}[z,v0:Top]. (peval(v0;z) \msim{} extend-val(v0;fix((\mlambda{}\%,a. extend-val(v0;\%;a)));z))
Date html generated:
2016_05_15-PM-07_18_02
Last ObjectModification:
2015_12_27-AM-11_28_29
Theory : general
Home
Index