Nuprl Lemma : valuation-exists-ext

x:formula(). ∀v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹.  (∃f:{a:formula()| a ⊆ x}  ⟶ 𝔹 [valuation(v0;x;f)])


Proof




Definitions occuring in Statement :  valuation: valuation(v0;x;f) psub: a ⊆ b pvar?: pvar?(v) formula: formula() assert: b bool: 𝔹 all: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T valuation-exists uniform-comp-nat-induction
Lemmas referenced :  valuation-exists uniform-comp-nat-induction
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:formula().  \mforall{}v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}.
    (\mexists{}f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}  [valuation(v0;x;f)])



Date html generated: 2018_05_21-PM-08_54_13
Last ObjectModification: 2018_05_19-PM-05_06_52

Theory : general


Home Index