Nuprl Lemma : valuation-exists-ext
∀x:formula(). ∀v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹.  (∃f:{a:formula()| a ⊆ x}  ⟶ 𝔹 [valuation(v0;x;f)])
Proof
Definitions occuring in Statement : 
valuation: valuation(v0;x;f)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
assert: ↑b
, 
bool: 𝔹
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
valuation-exists, 
uniform-comp-nat-induction
Lemmas referenced : 
valuation-exists, 
uniform-comp-nat-induction
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}x:formula().  \mforall{}v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}.
    (\mexists{}f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}  [valuation(v0;x;f)])
Date html generated:
2018_05_21-PM-08_54_13
Last ObjectModification:
2018_05_19-PM-05_06_52
Theory : general
Home
Index