Nuprl Lemma : valuation-exists
∀x:formula(). ∀v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹.  (∃f:{a:formula()| a ⊆ x}  ⟶ 𝔹 [valuation(v0;x;f)])
Proof
Definitions occuring in Statement : 
valuation: valuation(v0;x;f), 
psub: a ⊆ b, 
pvar?: pvar?(v), 
formula: formula(), 
assert: ↑b, 
bool: 𝔹, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
all: ∀x:A. B[x], 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
implies: P ⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
guard: {T}, 
bdd-val: bdd-val(v0;x;n), 
top: Top, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
ge: i ≥ j , 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
pimp: pimp(left;right), 
por: por(left;right), 
band: p ∧b q, 
pand: pand(left;right), 
squash: ↓T, 
less_than: a < b, 
pnot: pnot(sub), 
bnot: ¬bb, 
bfalse: ff, 
true: True, 
pi1: fst(t), 
pvar?: pvar?(v), 
assert: ↑b, 
cand: A c∧ B, 
formula_ind: formula_ind, 
prank: prank(x), 
extend-val: extend-val(v0;g;x), 
formula_size: formula_size(p), 
pvar: pvar(name), 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
uiff: uiff(P;Q), 
btrue: tt, 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
ext-eq: A ≡ B, 
sq_type: SQType(T), 
psub: a ⊆ b, 
istype: istype(T), 
sq_exists: ∃x:A [B[x]], 
valuation: valuation(v0;x;f)
Lemmas referenced : 
formula_wf, 
bool_wf, 
pvar?_wf, 
assert_wf, 
psub_wf, 
istype-false, 
int_seg_subtype_nat, 
int_seg_wf, 
nat_wf, 
bdd-val_wf, 
uniform-comp-nat-induction, 
prank_wf, 
less_than_wf, 
le_wf, 
decidable__lt, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
intformless_wf, 
intformnot_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__le, 
nat_properties, 
subtract_nat_wf, 
subtract_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
assert_of_le_int, 
bool_cases, 
iff_weakening_equal, 
imax_unfold, 
add_functionality_wrt_eq, 
true_wf, 
squash_wf, 
not_wf, 
le_int_wf, 
ifthenelse_wf, 
pimp_wf, 
por_wf, 
bor_wf, 
imax_wf, 
pand_wf, 
pnot_wf, 
false_wf, 
add-is-int-iff, 
bnot_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
formula_size_wf, 
neg_assert_of_eq_atom, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
eqff_to_assert, 
pvar_wf, 
atom_subtype_base, 
assert_of_eq_atom, 
eqtt_to_assert, 
eq_atom_wf, 
formula-ext, 
subtype_rel_self, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
subtract-1-ge-0, 
int_seg_properties, 
ge_wf, 
psub_transitivity, 
psub_weakening, 
equal_wf, 
istype-less_than, 
istype-le, 
istype-assert, 
psub-same, 
band_wf, 
subtype_rel_sets, 
subtype_rel_dep_function, 
prank_functionality, 
extend-val_wf, 
add_nat_wf, 
valuation_wf, 
set_wf
Rules used in proof : 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
universeIsType, 
productIsType, 
sqequalRule, 
hypothesisEquality, 
inhabitedIsType, 
setIsType, 
functionIsType, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
because_Cache, 
independent_pairFormation, 
independent_isectElimination, 
applyEquality, 
rename, 
setElimination, 
natural_numberEquality, 
isectIsType, 
isect_memberFormation_alt, 
independent_functionElimination, 
lambdaEquality_alt, 
dependent_set_memberFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
equalityIsType1, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
applyLambdaEquality, 
unionElimination, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
productElimination, 
universeEquality, 
imageMemberEquality, 
intEquality, 
addEquality, 
pointwiseFunctionality, 
imageElimination, 
baseClosed, 
closedConclusion, 
baseApply, 
equalityIsType2, 
atomEquality, 
cumulativity, 
equalityElimination, 
tokenEquality, 
promote_hyp, 
hypothesis_subsumption, 
instantiate, 
functionIsTypeImplies, 
axiomEquality, 
intWeakElimination, 
inrFormation, 
inlFormation, 
inrFormation_alt, 
Error :memTop, 
isectIsTypeImplies, 
equalityIstype, 
inlFormation_alt, 
unionIsType, 
productEquality, 
setEquality, 
dependent_set_memberEquality, 
lambdaEquality, 
lambdaFormation, 
dependent_pairFormation, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberFormation
Latex:
\mforall{}x:formula().  \mforall{}v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}.
    (\mexists{}f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}  [valuation(v0;x;f)])
Date html generated:
2020_05_20-AM-08_19_18
Last ObjectModification:
2020_01_27-PM-01_36_09
Theory : general
Home
Index