Nuprl Lemma : psub_wf

[a,b:formula()].  (a ⊆ b ∈ ℙ)


Proof




Definitions occuring in Statement :  psub: a ⊆ b formula: formula() uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T psub: a ⊆ b prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4]
Lemmas referenced :  pimp_wf por_wf pand_wf pnot_wf equal_wf or_wf atom_subtype_base formula_wf equal-wf-T-base formula_ind_wf_simple
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination universeEquality hypothesisEquality lambdaEquality hypothesis baseApply closedConclusion baseClosed applyEquality atomEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[a,b:formula()].    (a  \msubseteq{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-07_13_15
Last ObjectModification: 2016_01_16-AM-09_45_02

Theory : general


Home Index