Nuprl Lemma : bdd-val_wf
∀[x:formula()]. ∀[v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹]. ∀[n:ℕ].  (bdd-val(v0;x;n) ∈ Type)
Proof
Definitions occuring in Statement : 
bdd-val: bdd-val(v0;x;n)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
nat: ℕ
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bdd-val: bdd-val(v0;x;n)
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
ext-eq_weakening, 
subtype_rel_weakening, 
psub_transitivity, 
subtype_rel_sets, 
subtype_rel_dep_function, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
prank_functionality, 
set_wf, 
pvar?_wf, 
assert_wf, 
nat_wf, 
extend-val_wf, 
equal_wf, 
all_wf, 
bool_wf, 
and_wf, 
prank_wf, 
less_than_wf, 
psub_wf, 
formula_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
setEquality, 
functionEquality, 
lemma_by_obid, 
hypothesis, 
productEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
lambdaFormation, 
lambdaEquality, 
dependent_set_memberEquality, 
productElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
independent_isectElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination
Latex:
\mforall{}[x:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[n:\mBbbN{}].    (bdd-val(v0;x;n)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-07_16_19
Last ObjectModification:
2016_01_16-AM-09_46_40
Theory : general
Home
Index