Nuprl Lemma : prank_wf

[x:formula()]. (prank(x) ∈ ℕ)


Proof




Definitions occuring in Statement :  prank: prank(x) formula: formula() nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prank: prank(x) so_lambda: λ2x.t[x] nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: so_apply: x[s] so_lambda: λ2y.t[x; y] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) guard: {T} uiff: uiff(P;Q) so_apply: x[s1;s2;s3;s4]
Lemmas referenced :  formula_ind_wf_simple nat_wf false_wf le_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf formula_wf imax_wf add_nat_wf imax_nat add-is-int-iff intformeq_wf int_formula_prop_eq_lemma equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation atomEquality addEquality setElimination rename dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed productElimination independent_functionElimination axiomEquality

Latex:
\mforall{}[x:formula()].  (prank(x)  \mmember{}  \mBbbN{})



Date html generated: 2018_05_21-PM-08_52_36
Last ObjectModification: 2017_07_26-PM-06_15_50

Theory : general


Home Index