Nuprl Lemma : psub_transitivity

a,b,c:formula().  (a ⊆  b ⊆  a ⊆ c)


Proof




Definitions occuring in Statement :  psub: a ⊆ b formula: formula() all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T implies:  Q prop: so_apply: x[s] psub: a ⊆ b pvar: pvar(name) formula_ind: formula_ind all: x:A. B[x] subtype_rel: A ⊆B pnot: pnot(sub) or: P ∨ Q pand: pand(left;right) por: por(left;right) pimp: pimp(left;right) guard: {T}
Lemmas referenced :  formula-induction all_wf formula_wf psub_wf equal-wf-T-base atom_subtype_base equal_wf pnot_wf or_wf pand_wf por_wf pimp_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin sqequalRule lambdaEquality hypothesis functionEquality hypothesisEquality independent_functionElimination lambdaFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality,  baseApply closedConclusion baseClosed applyEquality atomEquality unionElimination dependent_functionElimination inrFormation inlFormation because_Cache

Latex:
\mforall{}a,b,c:formula().    (a  \msubseteq{}  b  {}\mRightarrow{}  b  \msubseteq{}  c  {}\mRightarrow{}  a  \msubseteq{}  c)



Date html generated: 2016_10_25-AM-11_21_27
Last ObjectModification: 2016_07_12-AM-07_27_52

Theory : general


Home Index