Nuprl Lemma : formula-induction

[P:formula() ⟶ ℙ]
  ((∀name:Atom. P[pvar(name)])
   (∀sub:formula(). (P[sub]  P[pnot(sub)]))
   (∀left,right:formula().  (P[left]  P[right]  P[pand(left;right)]))
   (∀left,right:formula().  (P[left]  P[right]  P[por(left;right)]))
   (∀left,right:formula().  (P[left]  P[right]  P[pimp(left;right)]))
   {∀v:formula(). P[v]})


Proof




Definitions occuring in Statement :  pimp: pimp(left;right) por: por(left;right) pand: pand(left;right) pnot: pnot(sub) pvar: pvar(name) formula: formula() uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] atom: Atom
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q guard: {T} so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B nat: prop: so_apply: x[s] all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A false: False ext-eq: A ≡ B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) eq_atom: =a y ifthenelse: if then else fi  pvar: pvar(name) formula_size: formula_size(p) bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b pnot: pnot(sub) cand: c∧ B ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b squash: T pand: pand(left;right) por: por(left;right) pimp: pimp(left;right)
Lemmas referenced :  uniform-comp-nat-induction all_wf formula_wf isect_wf le_wf formula_size_wf nat_wf less_than'_wf formula-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_formula_prop_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma lelt_wf uall_wf int_seg_wf pimp_wf por_wf pand_wf pnot_wf pvar_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis hypothesisEquality applyEquality because_Cache setElimination rename functionExtensionality independent_functionElimination productElimination independent_pairEquality dependent_functionElimination voidElimination axiomEquality equalityTransitivity equalitySymmetry promote_hyp hypothesis_subsumption tokenEquality unionElimination equalityElimination independent_isectElimination instantiate cumulativity atomEquality dependent_pairFormation applyLambdaEquality natural_numberEquality int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll dependent_set_memberEquality imageElimination functionEquality universeEquality

Latex:
\mforall{}[P:formula()  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}name:Atom.  P[pvar(name)])
    {}\mRightarrow{}  (\mforall{}sub:formula().  (P[sub]  {}\mRightarrow{}  P[pnot(sub)]))
    {}\mRightarrow{}  (\mforall{}left,right:formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[pand(left;right)]))
    {}\mRightarrow{}  (\mforall{}left,right:formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[por(left;right)]))
    {}\mRightarrow{}  (\mforall{}left,right:formula().    (P[left]  {}\mRightarrow{}  P[right]  {}\mRightarrow{}  P[pimp(left;right)]))
    {}\mRightarrow{}  \{\mforall{}v:formula().  P[v]\})



Date html generated: 2018_05_21-PM-08_52_08
Last ObjectModification: 2017_07_26-PM-06_15_22

Theory : general


Home Index