Nuprl Lemma : formula-ext

formula() ≡ lbl:Atom × if lbl =a "var" then Atom
                       if lbl =a "not" then formula()
                       if lbl =a "and" then left:formula() × formula()
                       if lbl =a "or" then left:formula() × formula()
                       if lbl =a "imp" then left:formula() × formula()
                       else Void
                       fi 


Proof




Definitions occuring in Statement :  formula: formula() ifthenelse: if then else fi  eq_atom: =a y ext-eq: A ≡ B product: x:A × B[x] token: "$token" atom: Atom void: Void
Definitions unfolded in proof :  ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T formula: formula() uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} eq_atom: =a y bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False formulaco_size: formulaco_size(p) nat: so_lambda: λ2x.t[x] so_apply: x[s] has-value: (a)↓ formula_size: formula_size(p) le: A ≤ B less_than': less_than'(a;b) not: ¬A
Lemmas referenced :  formulaco-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom int_subtype_base formulaco_size_wf subtype_partial_sqtype_base nat_wf set_subtype_base le_wf base_wf value-type-has-value int-value-type has-value_wf-partial set-value-type formula_wf ifthenelse_wf formulaco_wf add-nat false_wf formula_size_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaEquality sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid hypothesis promote_hyp productElimination hypothesis_subsumption hypothesisEquality applyEquality sqequalRule dependent_pairEquality isectElimination tokenEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination because_Cache instantiate cumulativity atomEquality dependent_functionElimination independent_functionElimination dependent_pairFormation voidElimination dependent_set_memberEquality natural_numberEquality intEquality baseApply closedConclusion baseClosed callbyvalueAdd universeEquality productEquality voidEquality sqleReflexivity

Latex:
formula()  \mequiv{}  lbl:Atom  \mtimes{}  if  lbl  =a  "var"  then  Atom
                                              if  lbl  =a  "not"  then  formula()
                                              if  lbl  =a  "and"  then  left:formula()  \mtimes{}  formula()
                                              if  lbl  =a  "or"  then  left:formula()  \mtimes{}  formula()
                                              if  lbl  =a  "imp"  then  left:formula()  \mtimes{}  formula()
                                              else  Void
                                              fi 



Date html generated: 2018_05_21-PM-08_47_50
Last ObjectModification: 2017_07_26-PM-06_10_48

Theory : general


Home Index