Nuprl Lemma : formulaco_wf
formulaco() ∈ Type
Proof
Definitions occuring in Statement : 
formulaco: formulaco()
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
formulaco: formulaco()
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
corec_wf, 
ifthenelse_wf, 
eq_atom_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
productEquality, 
atomEquality, 
instantiate, 
hypothesisEquality, 
tokenEquality, 
hypothesis, 
universeEquality, 
voidEquality
Latex:
formulaco()  \mmember{}  Type
Date html generated:
2016_05_15-PM-07_00_58
Last ObjectModification:
2015_12_27-AM-11_38_04
Theory : general
Home
Index