Nuprl Lemma : formulaco_wf
formulaco() ∈ Type
Proof
Definitions occuring in Statement :
formulaco: formulaco()
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
formulaco: formulaco()
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
corec_wf,
ifthenelse_wf,
eq_atom_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
lambdaEquality,
productEquality,
atomEquality,
instantiate,
hypothesisEquality,
tokenEquality,
hypothesis,
universeEquality,
voidEquality
Latex:
formulaco() \mmember{} Type
Date html generated:
2016_05_15-PM-07_00_58
Last ObjectModification:
2015_12_27-AM-11_38_04
Theory : general
Home
Index