Nuprl Lemma : formulaco_wf

formulaco() ∈ Type


Proof




Definitions occuring in Statement :  formulaco: formulaco() member: t ∈ T universe: Type
Definitions unfolded in proof :  formulaco: formulaco() member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  corec_wf ifthenelse_wf eq_atom_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality productEquality atomEquality instantiate hypothesisEquality tokenEquality hypothesis universeEquality voidEquality

Latex:
formulaco()  \mmember{}  Type



Date html generated: 2016_05_15-PM-07_00_58
Last ObjectModification: 2015_12_27-AM-11_38_04

Theory : general


Home Index