Nuprl Lemma : psub_weakening

a,b:formula().  a ⊆ supposing b ∈ formula()


Proof




Definitions occuring in Statement :  psub: a ⊆ b formula: formula() uimplies: supposing a all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] so_lambda: λ2x.t[x] member: t ∈ T uimplies: supposing a prop: so_apply: x[s] implies:  Q psub: a ⊆ b pvar: pvar(name) formula_ind: formula_ind subtype_rel: A ⊆B pnot: pnot(sub) or: P ∨ Q pand: pand(left;right) por: por(left;right) pimp: pimp(left;right) guard: {T}
Lemmas referenced :  formula-induction isect_wf equal_wf formula_wf psub_wf equal-wf-T-base atom_subtype_base pnot_wf or_wf pand_wf por_wf pimp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality hypothesis hypothesisEquality independent_functionElimination isect_memberFormation baseApply closedConclusion baseClosed applyEquality atomEquality axiomEquality rename inlFormation because_Cache

Latex:
\mforall{}a,b:formula().    a  \msubseteq{}  b  supposing  a  =  b



Date html generated: 2018_05_21-PM-08_52_49
Last ObjectModification: 2017_07_26-PM-06_16_05

Theory : general


Home Index