Nuprl Lemma : psub-same
∀a:formula(). (a ⊆ a 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
psub: a ⊆ b
, 
formula: formula()
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
Lemmas referenced : 
psub_wf, 
true_wf, 
formula_wf, 
psub_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination
Latex:
\mforall{}a:formula().  (a  \msubseteq{}  a  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_15-PM-07_13_42
Last ObjectModification:
2015_12_27-AM-11_30_34
Theory : general
Home
Index