Nuprl Lemma : valuation_wf

[x:formula()]. ∀[v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹]. ∀[f:{a:formula()| a ⊆ x}  ⟶ 𝔹].  (valuation(v0;x;f) ∈ ℙ\000C)


Proof




Definitions occuring in Statement :  valuation: valuation(v0;x;f) psub: a ⊆ b pvar?: pvar?(v) formula: formula() assert: b bool: 𝔹 uall: [x:A]. B[x] prop: and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T valuation: valuation(v0;x;f) prop: so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B so_apply: x[s] and: P ∧ Q uimplies: supposing a implies:  Q cand: c∧ B guard: {T}
Lemmas referenced :  all_wf formula_wf psub_wf equal_wf bool_wf extend-val_wf and_wf assert_wf pvar?_wf set_wf subtype_rel_dep_function subtype_rel_sets psub_transitivity subtype_rel_weakening ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename applyEquality dependent_set_memberEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality independent_isectElimination productElimination independent_pairFormation dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[x:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}].
    (valuation(v0;x;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-07_15_50
Last ObjectModification: 2015_12_27-AM-11_30_20

Theory : general


Home Index