Nuprl Lemma : valuation_wf
∀[x:formula()]. ∀[v0:{a:formula()| a ⊆ x ∧ (↑pvar?(a))}  ⟶ 𝔹]. ∀[f:{a:formula()| a ⊆ x}  ⟶ 𝔹].  (valuation(v0;x;f) ∈ ℙ\000C)
Proof
Definitions occuring in Statement : 
valuation: valuation(v0;x;f)
, 
psub: a ⊆ b
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
valuation: valuation(v0;x;f)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
all_wf, 
formula_wf, 
psub_wf, 
equal_wf, 
bool_wf, 
extend-val_wf, 
and_wf, 
assert_wf, 
pvar?_wf, 
set_wf, 
subtype_rel_dep_function, 
subtype_rel_sets, 
psub_transitivity, 
subtype_rel_weakening, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
applyEquality, 
dependent_set_memberEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
independent_isectElimination, 
productElimination, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[x:formula()].  \mforall{}[v0:\{a:formula()|  a  \msubseteq{}  x  \mwedge{}  (\muparrow{}pvar?(a))\}    {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:\{a:formula()|  a  \msubseteq{}  x\}    {}\mrightarrow{}  \mBbbB{}].
    (valuation(v0;x;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-07_15_50
Last ObjectModification:
2015_12_27-AM-11_30_20
Theory : general
Home
Index