Nuprl Lemma : pnegate_wf

[x:formula()]. (pnegate(x) ∈ formula())


Proof




Definitions occuring in Statement :  pnegate: pnegate(x) formula: formula() uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T pnegate: pnegate(x) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4]
Lemmas referenced :  formula_ind_wf_simple formula_wf pnot_wf pvar_wf por_wf pand_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality lambdaEquality atomEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:formula()].  (pnegate(x)  \mmember{}  formula())



Date html generated: 2016_05_15-PM-07_18_39
Last ObjectModification: 2015_12_27-AM-11_28_11

Theory : general


Home Index