Nuprl Lemma : select-nthtl0
∀[n:ℕ]. ∀[L:Top List].  (L[n] ~ nth_tl(n;L)[0])
Proof
Definitions occuring in Statement : 
select: L[n]
, 
nth_tl: nth_tl(n;as)
, 
list: T List
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
Lemmas referenced : 
select-as-hd, 
nth_tl_wf, 
top_wf, 
select-nthtl, 
list_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Top  List].    (L[n]  \msim{}  nth\_tl(n;L)[0])
Date html generated:
2016_05_15-PM-03_33_26
Last ObjectModification:
2015_12_27-PM-01_12_27
Theory : general
Home
Index