Nuprl Lemma : select-nthtl0

[n:ℕ]. ∀[L:Top List].  (L[n] nth_tl(n;L)[0])


Proof




Definitions occuring in Statement :  select: L[n] nth_tl: nth_tl(n;as) list: List nat: uall: [x:A]. B[x] top: Top natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat:
Lemmas referenced :  select-as-hd nth_tl_wf top_wf select-nthtl list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality setElimination rename sqequalAxiom isect_memberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:Top  List].    (L[n]  \msim{}  nth\_tl(n;L)[0])



Date html generated: 2016_05_15-PM-03_33_26
Last ObjectModification: 2015_12_27-PM-01_12_27

Theory : general


Home Index