Nuprl Lemma : select-nthtl0
∀[n:ℕ]. ∀[L:Top List]. (L[n] ~ nth_tl(n;L)[0])
Proof
Definitions occuring in Statement :
select: L[n]
,
nth_tl: nth_tl(n;as)
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
top: Top
,
natural_number: $n
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
Lemmas referenced :
select-as-hd,
nth_tl_wf,
top_wf,
select-nthtl,
list_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesis,
hypothesisEquality,
setElimination,
rename,
sqequalAxiom,
isect_memberEquality
Latex:
\mforall{}[n:\mBbbN{}]. \mforall{}[L:Top List]. (L[n] \msim{} nth\_tl(n;L)[0])
Date html generated:
2016_05_15-PM-03_33_26
Last ObjectModification:
2015_12_27-PM-01_12_27
Theory : general
Home
Index