Nuprl Lemma : sq_stable__sqle
∀[a,b:Base].  SqStable(a ≤ b)
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
base: Base, 
sqle: s ≤ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
prop: ℙ
Lemmas referenced : 
sq_stable_sqle, 
squash_wf, 
sqle_wf_base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
axiomSqleEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:Base].    SqStable(a  \mleq{}  b)
 Date html generated: 
2016_05_15-PM-03_14_35
 Last ObjectModification: 
2015_12_27-PM-01_02_21
Theory : general
Home
Index