Nuprl Lemma : sq_stable_and_left_false

[P:ℙ]. ∀Q:Top. ((¬P)  SqStable(P ∧ Q))


Proof




Definitions occuring in Statement :  sq_stable: SqStable(P) uall: [x:A]. B[x] top: Top prop: all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sq_stable: SqStable(P) squash: T false: False and: P ∧ Q not: ¬A member: t ∈ T prop:
Lemmas referenced :  squash_wf not_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut sqequalHypSubstitution imageElimination productElimination thin independent_functionElimination hypothesis voidElimination lemma_by_obid isectElimination productEquality cumulativity hypothesisEquality universeEquality

Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}Q:Top.  ((\mneg{}P)  {}\mRightarrow{}  SqStable(P  \mwedge{}  Q))



Date html generated: 2016_05_15-PM-03_14_23
Last ObjectModification: 2015_12_27-PM-01_02_10

Theory : general


Home Index