Nuprl Lemma : sq_stable_and_left_false
∀[P:ℙ]. ∀Q:Top. ((¬P) ⇒ SqStable(P ∧ Q))
Proof
Definitions occuring in Statement : 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
top: Top, 
prop: ℙ, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
false: False, 
and: P ∧ Q, 
not: ¬A, 
member: t ∈ T, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
not_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
imageElimination, 
productElimination, 
thin, 
independent_functionElimination, 
hypothesis, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
productEquality, 
cumulativity, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  \mforall{}Q:Top.  ((\mneg{}P)  {}\mRightarrow{}  SqStable(P  \mwedge{}  Q))
Date html generated:
2016_05_15-PM-03_14_23
Last ObjectModification:
2015_12_27-PM-01_02_10
Theory : general
Home
Index