Nuprl Lemma : sublist-rec-nil
∀[T:Type]. ∀[l:T List]. sublist-rec(T;[];l)
Proof
Definitions occuring in Statement :
sublist-rec: sublist-rec(T;l1;l2)
,
nil: []
,
list: T List
,
uall: ∀[x:A]. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
sublist-rec: sublist-rec(T;l1;l2)
,
all: ∀x:A. B[x]
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
member: t ∈ T
,
top: Top
,
so_apply: x[s1;s2;s3]
,
true: True
Lemmas referenced :
list_ind_nil_lemma,
list_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
sqequalRule,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
isect_memberEquality,
voidElimination,
voidEquality,
hypothesis,
natural_numberEquality,
isectElimination,
hypothesisEquality,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[l:T List]. sublist-rec(T;[];l)
Date html generated:
2016_05_15-PM-03_33_52
Last ObjectModification:
2015_12_27-PM-01_12_38
Theory : general
Home
Index