Nuprl Lemma : sublist-rec-nil

[T:Type]. ∀[l:T List].  sublist-rec(T;[];l)


Proof




Definitions occuring in Statement :  sublist-rec: sublist-rec(T;l1;l2) nil: [] list: List uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] sublist-rec: sublist-rec(T;l1;l2) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] true: True
Lemmas referenced :  list_ind_nil_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis natural_numberEquality isectElimination hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    sublist-rec(T;[];l)



Date html generated: 2016_05_15-PM-03_33_52
Last ObjectModification: 2015_12_27-PM-01_12_38

Theory : general


Home Index