Nuprl Lemma : sublist-rec-nil
∀[T:Type]. ∀[l:T List].  sublist-rec(T;[];l)
Proof
Definitions occuring in Statement : 
sublist-rec: sublist-rec(T;l1;l2)
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
sublist-rec: sublist-rec(T;l1;l2)
, 
all: ∀x:A. B[x]
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
true: True
Lemmas referenced : 
list_ind_nil_lemma, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
natural_numberEquality, 
isectElimination, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].    sublist-rec(T;[];l)
Date html generated:
2016_05_15-PM-03_33_52
Last ObjectModification:
2015_12_27-PM-01_12_38
Theory : general
Home
Index