Nuprl Lemma : sum_map_nil_lemma

f:Top. f[x] for x ∈ [] 0)


Proof




Definitions occuring in Statement :  sum-map: Σf[x] for x ∈ L nil: [] top: Top so_apply: x[s] all: x:A. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sum-map: Σf[x] for x ∈ L select: L[n] uall: [x:A]. B[x] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced :  base_wf stuck-spread length_of_nil_lemma top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}f:Top.  (\mSigma{}f[x]  for  x  \mmember{}  []  \msim{}  0)



Date html generated: 2016_05_15-PM-06_25_11
Last ObjectModification: 2016_01_16-PM-00_56_10

Theory : general


Home Index