Nuprl Lemma : sum_map_nil_lemma
∀f:Top. (Σf[x] for x ∈ [] ~ 0)
Proof
Definitions occuring in Statement : 
sum-map: Σf[x] for x ∈ L, 
nil: [], 
top: Top, 
so_apply: x[s], 
all: ∀x:A. B[x], 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
sum-map: Σf[x] for x ∈ L, 
select: L[n], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
sum: Σ(f[x] | x < k), 
sum_aux: sum_aux(k;v;i;x.f[x])
Lemmas referenced : 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}f:Top.  (\mSigma{}f[x]  for  x  \mmember{}  []  \msim{}  0)
Date html generated:
2016_05_15-PM-06_25_11
Last ObjectModification:
2016_01_16-PM-00_56_10
Theory : general
Home
Index