Nuprl Lemma : tagged-tag_wf

[T:Atom ⟶ Type]. ∀[x:tagged(x.T[x])].  (x.tag ∈ Atom)


Proof




Definitions occuring in Statement :  tagged-tag: x.tag tagged: tagged(x.T[x]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] atom: Atom universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tagged-tag: x.tag tagged: tagged(x.T[x]) pi1: fst(t) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  tagged_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination lambdaEquality applyEquality atomEquality isect_memberEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Atom  {}\mrightarrow{}  Type].  \mforall{}[x:tagged(x.T[x])].    (x.tag  \mmember{}  Atom)



Date html generated: 2016_05_15-PM-06_47_09
Last ObjectModification: 2015_12_27-AM-11_47_05

Theory : general


Home Index