Nuprl Lemma : type-mismatch_wf
∀[T,T1,T2,T3:Type]. ∀[f:T]. ∀[A:T1]. ∀[x:T2]. ∀[B:T3].  (type-mismatch(f; A; x; B) ∈ Unit)
Proof
Definitions occuring in Statement : 
type-mismatch: type-mismatch(f; A; x; B)
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
type-mismatch: type-mismatch(f; A; x; B)
Lemmas referenced : 
it_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesisEquality, 
isect_memberEquality, 
isectElimination, 
thin, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T,T1,T2,T3:Type].  \mforall{}[f:T].  \mforall{}[A:T1].  \mforall{}[x:T2].  \mforall{}[B:T3].    (type-mismatch(f;  A;  x;  B)  \mmember{}  Unit)
Date html generated:
2016_05_15-PM-03_24_36
Last ObjectModification:
2015_12_27-PM-01_06_06
Theory : general
Home
Index