Nuprl Lemma : type-mismatch_wf

[T,T1,T2,T3:Type]. ∀[f:T]. ∀[A:T1]. ∀[x:T2]. ∀[B:T3].  (type-mismatch(f; A; x; B) ∈ Unit)


Proof




Definitions occuring in Statement :  type-mismatch: type-mismatch(f; A; x; B) uall: [x:A]. B[x] unit: Unit member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T type-mismatch: type-mismatch(f; A; x; B)
Lemmas referenced :  it_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid hypothesis sqequalHypSubstitution axiomEquality equalityTransitivity equalitySymmetry hypothesisEquality isect_memberEquality isectElimination thin because_Cache universeEquality

Latex:
\mforall{}[T,T1,T2,T3:Type].  \mforall{}[f:T].  \mforall{}[A:T1].  \mforall{}[x:T2].  \mforall{}[B:T3].    (type-mismatch(f;  A;  x;  B)  \mmember{}  Unit)



Date html generated: 2016_05_15-PM-03_24_36
Last ObjectModification: 2015_12_27-PM-01_06_06

Theory : general


Home Index