Nuprl Lemma : xmiddle-elim2
∀[P:ℙ]. (((P ∨ (¬P)) 
⇒ False) 
⇒ False)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
prop: ℙ
Lemmas referenced : 
false_wf, 
or_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
inrEquality, 
inlEquality, 
functionEquality, 
sqequalHypSubstitution, 
cumulativity, 
cut, 
extract_by_obid, 
hypothesis, 
isectElimination, 
thin, 
universeEquality
Latex:
\mforall{}[P:\mBbbP{}].  (((P  \mvee{}  (\mneg{}P))  {}\mRightarrow{}  False)  {}\mRightarrow{}  False)
Date html generated:
2019_10_15-AM-11_32_58
Last ObjectModification:
2018_08_25-PM-02_14_06
Theory : general
Home
Index