Nuprl Lemma : ext-eq-equiv

EquivRel(Type;A,B.A ≡ B)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) ext-eq: A ≡ B universe: Type
Definitions unfolded in proof :  equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] cand: c∧ B sym: Sym(T;x,y.E[x; y]) implies:  Q uall: [x:A]. B[x] member: t ∈ T guard: {T} uimplies: supposing a prop: trans: Trans(T;x,y.E[x; y])
Lemmas referenced :  ext-eq_inversion ext-eq_wf ext-eq_transitivity ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity independent_pairFormation lambdaFormation_alt universeIsType universeEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis inhabitedIsType

Latex:
EquivRel(Type;A,B.A  \mequiv{}  B)



Date html generated: 2020_05_20-AM-08_24_23
Last ObjectModification: 2018_10_12-PM-00_19_37

Theory : lattices


Home Index