Nuprl Lemma : ext-eq-equiv
EquivRel(Type;A,B.A ≡ B)
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
ext-eq: A ≡ B, 
universe: Type
Definitions unfolded in proof : 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
and: P ∧ Q, 
refl: Refl(T;x,y.E[x; y]), 
all: ∀x:A. B[x], 
cand: A c∧ B, 
sym: Sym(T;x,y.E[x; y]), 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
trans: Trans(T;x,y.E[x; y])
Lemmas referenced : 
ext-eq_inversion, 
ext-eq_wf, 
ext-eq_transitivity, 
ext-eq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
lambdaFormation_alt, 
universeIsType, 
universeEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
inhabitedIsType
Latex:
EquivRel(Type;A,B.A  \mequiv{}  B)
Date html generated:
2020_05_20-AM-08_24_23
Last ObjectModification:
2018_10_12-PM-00_19_37
Theory : lattices
Home
Index