Nuprl Lemma : fl-point-sq

[T,eq:Top].
  (Point(face-lattice(T;eq)) {ac:fset(fset(T T))| 
                                (↑fset-antichain(union-deq(T;T;eq;eq);ac))
                                ∧ fset-all(ac;a.fset-contains-none(union-deq(T;T;eq;
                                                                             eq);a;x.face-lattice-constraints(x)))} )


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) face-lattice-constraints: face-lattice-constraints(x) lattice-point: Point(l) fset-antichain: fset-antichain(eq;ac) fset-contains-none: fset-contains-none(eq;s;x.Cs[x]) fset-all: fset-all(s;x.P[x]) fset: fset(T) union-deq: union-deq(A;B;a;b) assert: b uall: [x:A]. B[x] top: Top and: P ∧ Q set: {x:A| B[x]}  union: left right sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face-lattice: face-lattice(T;eq) top: Top so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  top_wf free-dlwc-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis axiomSqEquality hypothesisEquality because_Cache

Latex:
\mforall{}[T,eq:Top].
    (Point(face-lattice(T;eq)) 
    \msim{}  \{ac:fset(fset(T  +  T))| 
          (\muparrow{}fset-antichain(union-deq(T;T;eq;eq);ac))
          \mwedge{}  fset-all(ac;a.fset-contains-none(union-deq(T;T;eq;eq);a;x.face-lattice-constraints(x)))\}  )



Date html generated: 2020_05_20-AM-08_51_11
Last ObjectModification: 2016_01_18-PM-11_31_19

Theory : lattices


Home Index