Nuprl Lemma : comb_for_cons_wf_listp
λA,l,x,z. [x / l] ∈ A:Type ⟶ l:(A List) ⟶ x:A ⟶ (↓True) ⟶ A List+
Proof
Definitions occuring in Statement : 
listp: A List+
, 
cons: [a / b]
, 
list: T List
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
cons_wf_listp, 
squash_wf, 
true_wf, 
istype-universe, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
universeEquality
Latex:
\mlambda{}A,l,x,z.  [x  /  l]  \mmember{}  A:Type  {}\mrightarrow{}  l:(A  List)  {}\mrightarrow{}  x:A  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A  List\msupplus{}
Date html generated:
2019_10_15-AM-10_53_30
Last ObjectModification:
2018_10_09-AM-10_31_06
Theory : list!
Home
Index