Nuprl Lemma : comb_for_cons_wf_listp

λA,l,x,z. [x l] ∈ A:Type ⟶ l:(A List) ⟶ x:A ⟶ (↓True) ⟶ List+


Proof




Definitions occuring in Statement :  listp: List+ cons: [a b] list: List squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T squash: T uall: [x:A]. B[x] prop:
Lemmas referenced :  cons_wf_listp squash_wf true_wf istype-universe list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid isectElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality

Latex:
\mlambda{}A,l,x,z.  [x  /  l]  \mmember{}  A:Type  {}\mrightarrow{}  l:(A  List)  {}\mrightarrow{}  x:A  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  A  List\msupplus{}



Date html generated: 2019_10_15-AM-10_53_30
Last ObjectModification: 2018_10_09-AM-10_31_06

Theory : list!


Home Index