Nuprl Lemma : reduce2_cons_lemma

t,h,i,k,f:Top.  (reduce2(f;k;i;[h t]) reduce2(f;k;i 1;t))


Proof




Definitions occuring in Statement :  reduce2: reduce2(f;k;i;as) cons: [a b] top: Top all: x:A. B[x] apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T reduce2: reduce2(f;k;i;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}t,h,i,k,f:Top.    (reduce2(f;k;i;[h  /  t])  \msim{}  f  h  i  reduce2(f;k;i  +  1;t))



Date html generated: 2016_05_15-PM-01_56_36
Last ObjectModification: 2015_12_27-AM-00_25_03

Theory : list!


Home Index