Nuprl Lemma : reduce2_nil_lemma

i,k,f:Top.  (reduce2(f;k;i;[]) k)


Proof




Definitions occuring in Statement :  reduce2: reduce2(f;k;i;as) nil: [] top: Top all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T reduce2: reduce2(f;k;i;as) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  top_wf list_ind_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}i,k,f:Top.    (reduce2(f;k;i;[])  \msim{}  k)



Date html generated: 2016_05_15-PM-01_56_33
Last ObjectModification: 2015_12_27-AM-00_25_05

Theory : list!


Home Index