Step
*
1
1
1
1
of Lemma
det-id
1. r : CRng
2. n : ℕ
3. eq : EqDecider(ℕn ⟶ ℕn)
4. ∀[r:Rng]. ∀[f:(ℕn ⟶ ℕn) ⟶ |r|]. ∀[as:(ℕn ⟶ ℕn) List].
(Σ{r} x ∈ as. f[x] = (Σ{r} x ∈ filter(eq (λx.x);as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(eq (λx.x) a));as). f[x]) ∈ |r|)
⊢ (Σ{r} f ∈ filter(eq (λf.f);permutations-list(n)). if eq f (λx.x) then 1 else 0 fi
+r
Σ{r} f ∈ filter(λa.(¬b(eq (λf.f) a));permutations-list(n)). if eq f (λx.x) then 1 else 0 fi )
= 1
∈ |r|
BY
{ ((Assert λx.x ∈ ℕn ⟶ ℕn BY
Auto)
THEN (Subst' Σ{r} f ∈ filter(λa.(¬b(eq (λf.f) a));permutations-list(n)). if eq f (λx.x) then 1 else 0 fi = 0 ∈ |r| 0
THENA Auto
)
) }
1
.....equality.....
1. r : CRng
2. n : ℕ
3. eq : EqDecider(ℕn ⟶ ℕn)
4. ∀[r:Rng]. ∀[f:(ℕn ⟶ ℕn) ⟶ |r|]. ∀[as:(ℕn ⟶ ℕn) List].
(Σ{r} x ∈ as. f[x] = (Σ{r} x ∈ filter(eq (λx.x);as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(eq (λx.x) a));as). f[x]) ∈ |r|)
5. λx.x ∈ ℕn ⟶ ℕn
⊢ Σ{r} f ∈ filter(λa.(¬b(eq (λf.f) a));permutations-list(n)). if eq f (λx.x) then 1 else 0 fi = 0 ∈ |r|
2
1. r : CRng
2. n : ℕ
3. eq : EqDecider(ℕn ⟶ ℕn)
4. ∀[r:Rng]. ∀[f:(ℕn ⟶ ℕn) ⟶ |r|]. ∀[as:(ℕn ⟶ ℕn) List].
(Σ{r} x ∈ as. f[x] = (Σ{r} x ∈ filter(eq (λx.x);as). f[x] +r Σ{r} x ∈ filter(λa.(¬b(eq (λx.x) a));as). f[x]) ∈ |r|)
5. λx.x ∈ ℕn ⟶ ℕn
⊢ (Σ{r} f ∈ filter(eq (λf.f);permutations-list(n)). if eq f (λx.x) then 1 else 0 fi +r 0) = 1 ∈ |r|
Latex:
Latex:
1. r : CRng
2. n : \mBbbN{}
3. eq : EqDecider(\mBbbN{}n {}\mrightarrow{} \mBbbN{}n)
4. \mforall{}[r:Rng]. \mforall{}[f:(\mBbbN{}n {}\mrightarrow{} \mBbbN{}n) {}\mrightarrow{} |r|]. \mforall{}[as:(\mBbbN{}n {}\mrightarrow{} \mBbbN{}n) List].
(\mSigma{}\{r\} x \mmember{} as. f[x]
= (\mSigma{}\{r\} x \mmember{} filter(eq (\mlambda{}x.x);as). f[x] +r \mSigma{}\{r\} x \mmember{} filter(\mlambda{}a.(\mneg{}\msubb{}(eq (\mlambda{}x.x) a));as). f[x]))
\mvdash{} (\mSigma{}\{r\} f \mmember{} filter(eq (\mlambda{}f.f);permutations-list(n)). if eq f (\mlambda{}x.x) then 1 else 0 fi
+r
\mSigma{}\{r\} f \mmember{} filter(\mlambda{}a.(\mneg{}\msubb{}(eq (\mlambda{}f.f) a));permutations-list(n)). if eq f (\mlambda{}x.x) then 1 else 0 fi )
= 1
By
Latex:
((Assert \mlambda{}x.x \mmember{} \mBbbN{}n {}\mrightarrow{} \mBbbN{}n BY
Auto)
THEN (Subst' \mSigma{}\{r\} f \mmember{} filter(\mlambda{}a.(\mneg{}\msubb{}(eq (\mlambda{}f.f) a));permutations-list(n)). if eq f (\mlambda{}x.x)
then 1
else 0
fi
= 0 0
THENA Auto
)
)
Home
Index