Nuprl Lemma : vector-add_wf
∀[i:Type]. ∀[r:RngSig]. ∀[a,b:i ⟶ |r|].  ((a + b) ∈ i ⟶ |r|)
Proof
Definitions occuring in Statement : 
vector-add: (a + b)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
rng_car: |r|
, 
rng_sig: RngSig
Definitions unfolded in proof : 
infix_ap: x f y
, 
vector-add: (a + b)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
rng_car_wf, 
rng_plus_wf
Rules used in proof : 
universeEquality, 
because_Cache, 
isect_memberEquality, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
cumulativity, 
functionExtensionality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[i:Type].  \mforall{}[r:RngSig].  \mforall{}[a,b:i  {}\mrightarrow{}  |r|].    ((a  +  b)  \mmember{}  i  {}\mrightarrow{}  |r|)
Date html generated:
2018_05_21-PM-09_40_31
Last ObjectModification:
2017_12_18-PM-00_15_36
Theory : matrices
Home
Index