Nuprl Lemma : vector-add_wf

[i:Type]. ∀[r:RngSig]. ∀[a,b:i ⟶ |r|].  ((a b) ∈ i ⟶ |r|)


Proof




Definitions occuring in Statement :  vector-add: (a b) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type rng_car: |r| rng_sig: RngSig
Definitions unfolded in proof :  infix_ap: y vector-add: (a b) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf rng_car_wf rng_plus_wf
Rules used in proof :  universeEquality because_Cache isect_memberEquality functionEquality equalitySymmetry equalityTransitivity axiomEquality cumulativity functionExtensionality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid applyEquality lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[i:Type].  \mforall{}[r:RngSig].  \mforall{}[a,b:i  {}\mrightarrow{}  |r|].    ((a  +  b)  \mmember{}  i  {}\mrightarrow{}  |r|)



Date html generated: 2018_05_21-PM-09_40_31
Last ObjectModification: 2017_12_18-PM-00_15_36

Theory : matrices


Home Index