Nuprl Lemma : A-bind_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)]. ∀[T,S:Type].
  (A-bind(array-model(AType)) ∈ (A-map T) ⟶ (T ⟶ (A-map S)) ⟶ (A-map S))
Proof
Definitions occuring in Statement : 
A-bind: A-bind(AModel)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
array-model: array-model(AType)
, 
A-bind: A-bind(AModel)
, 
A-map: A-map
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
array-monad: array-monad(AType)
, 
M-bind: M-bind(Mnd)
, 
M-map: M-map(mnd)
, 
let: let, 
mk_monad: mk_monad(M;return;bind)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
array_wf, 
nat_wf, 
pi1_wf, 
Arr_wf, 
pi2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
universeEquality, 
because_Cache, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isect_memberFormation, 
introduction, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
productEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].  \mforall{}[T,S:Type].
    (A-bind(array-model(AType))  \mmember{}  (A-map  T)  {}\mrightarrow{}  (T  {}\mrightarrow{}  (A-map  S))  {}\mrightarrow{}  (A-map  S))
Date html generated:
2016_05_15-PM-02_18_28
Last ObjectModification:
2015_12_27-AM-08_58_51
Theory : monads
Home
Index