Nuprl Lemma : M-bind_wf

[Mnd:Monad]. (M-bind(Mnd) ∈ ⋂T,S:Type.  ((M-map(Mnd) T) ⟶ (T ⟶ (M-map(Mnd) S)) ⟶ (M-map(Mnd) S)))


Proof




Definitions occuring in Statement :  M-bind: M-bind(Mnd) M-map: M-map(mnd) monad: Monad uall: [x:A]. B[x] member: t ∈ T apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad: Monad M-bind: M-bind(Mnd) M-map: M-map(mnd) pi1: fst(t) pi2: snd(t)
Lemmas referenced :  monad_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[Mnd:Monad]
    (M-bind(Mnd)  \mmember{}  \mcap{}T,S:Type.    ((M-map(Mnd)  T)  {}\mrightarrow{}  (T  {}\mrightarrow{}  (M-map(Mnd)  S))  {}\mrightarrow{}  (M-map(Mnd)  S)))



Date html generated: 2016_05_15-PM-02_16_22
Last ObjectModification: 2015_12_27-AM-08_59_21

Theory : monads


Home Index