Nuprl Lemma : M-bind_wf
∀[Mnd:Monad]. (M-bind(Mnd) ∈ ⋂T,S:Type.  ((M-map(Mnd) T) ⟶ (T ⟶ (M-map(Mnd) S)) ⟶ (M-map(Mnd) S)))
Proof
Definitions occuring in Statement : 
M-bind: M-bind(Mnd)
, 
M-map: M-map(mnd)
, 
monad: Monad
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monad: Monad
, 
M-bind: M-bind(Mnd)
, 
M-map: M-map(mnd)
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
monad_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid
Latex:
\mforall{}[Mnd:Monad]
    (M-bind(Mnd)  \mmember{}  \mcap{}T,S:Type.    ((M-map(Mnd)  T)  {}\mrightarrow{}  (T  {}\mrightarrow{}  (M-map(Mnd)  S))  {}\mrightarrow{}  (M-map(Mnd)  S)))
Date html generated:
2016_05_15-PM-02_16_22
Last ObjectModification:
2015_12_27-AM-08_59_21
Theory : monads
Home
Index