Nuprl Lemma : mtype_wf
∀[Mn:Monad]. (mtype(Mn) ∈ Type ⟶ Type)
Proof
Definitions occuring in Statement : 
mtype: mtype(M)
, 
monad: Monad
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mtype: mtype(M)
, 
pi1: fst(t)
, 
monad: Monad
Lemmas referenced : 
monad_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid
Latex:
\mforall{}[Mn:Monad].  (mtype(Mn)  \mmember{}  Type  {}\mrightarrow{}  Type)
Date html generated:
2016_05_15-PM-02_21_22
Last ObjectModification:
2015_12_27-AM-08_57_54
Theory : monads
Home
Index