Nuprl Lemma : mtype_wf

[Mn:Monad]. (mtype(Mn) ∈ Type ⟶ Type)


Proof




Definitions occuring in Statement :  mtype: mtype(M) monad: Monad uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mtype: mtype(M) pi1: fst(t) monad: Monad
Lemmas referenced :  monad_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[Mn:Monad].  (mtype(Mn)  \mmember{}  Type  {}\mrightarrow{}  Type)



Date html generated: 2016_05_15-PM-02_21_22
Last ObjectModification: 2015_12_27-AM-08_57_54

Theory : monads


Home Index