Nuprl Lemma : newarray_wf

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (newarray(AType) ∈ Val ⟶ Arr(AType))


Proof




Definitions occuring in Statement :  newarray: newarray(AType) Arr: Arr(AType) array: array{i:l}(Val;n) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T array: array{i:l}(Val;n) newarray: newarray(AType) pi1: fst(t) pi2: snd(t) Arr: Arr(AType)
Lemmas referenced :  array_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (newarray(AType)  \mmember{}  Val  {}\mrightarrow{}  Arr(AType))



Date html generated: 2016_05_15-PM-02_17_36
Last ObjectModification: 2015_12_27-AM-08_59_07

Theory : monads


Home Index