Nuprl Lemma : newarray_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].  (newarray(AType) ∈ Val ⟶ Arr(AType))
Proof
Definitions occuring in Statement : 
newarray: newarray(AType)
, 
Arr: Arr(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
array: array{i:l}(Val;n)
, 
newarray: newarray(AType)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
Arr: Arr(AType)
Lemmas referenced : 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].    (newarray(AType)  \mmember{}  Val  {}\mrightarrow{}  Arr(AType))
Date html generated:
2016_05_15-PM-02_17_36
Last ObjectModification:
2015_12_27-AM-08_59_07
Theory : monads
Home
Index