Step
*
2
1
2
1
1
1
1
of Lemma
KozenSilva-theorem
.....subterm..... T:t
3:n
1. r : CRng
2. x : Atom
3. y : Atom
4. ¬(x = y ∈ Atom)
5. h : PowerSeries(r)
6. d : ℕ ⟶ ℕ
7. k : ℤ
8. k ∈ ℕ
9. k ≠ 0
10. 0 < k
11. [Moessner-aux(r;x;y;h;d;k - 1)]_Σ(d i | i < k)
= ([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)+atom(y)))^(d (i + 1)))
∈ PowerSeries(r)
12. Σ(d i | i < k) ∈ ℕ
13. Σ(d i | i < k + 1) ∈ ℕ
14. [([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)
                                                                      +atom(y)))^(d (i + 1)))]_Σ(d i | i < k)
= ([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)+atom(y)))^(d (i + 1)))
∈ PowerSeries(r)
15. Σ(d i | i < k) ≤ Σ(d i | i < k + 1)
⊢ [h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))(y:=(atom(x)+atom(y)))
= [h]_d 0(y:=((k ⋅r 1)*atom(x)+atom(y)))
∈ PowerSeries(r)
BY
{ ((RWW "fps-compose-compose fps-compose-add fps-compose-scalar-mul" 0 THEN Auto) THEN EqCD THEN Auto)⋅ }
1
.....subterm..... T:t
5:n
1. r : CRng
2. x : Atom
3. y : Atom
4. ¬(x = y ∈ Atom)
5. h : PowerSeries(r)
6. d : ℕ ⟶ ℕ
7. k : ℤ
8. k ∈ ℕ
9. k ≠ 0
10. 0 < k
11. [Moessner-aux(r;x;y;h;d;k - 1)]_Σ(d i | i < k)
= ([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)+atom(y)))^(d (i + 1)))
∈ PowerSeries(r)
12. Σ(d i | i < k) ∈ ℕ
13. Σ(d i | i < k + 1) ∈ ℕ
14. [([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)
                                                                      +atom(y)))^(d (i + 1)))]_Σ(d i | i < k)
= ([h]_d 0(y:=(((k - 1) ⋅r 1)*atom(x)+atom(y)))*Π(i∈upto(k - 1)).((((k - 1 - i) ⋅r 1)*atom(x)+atom(y)))^(d (i + 1)))
∈ PowerSeries(r)
15. Σ(d i | i < k) ≤ Σ(d i | i < k + 1)
⊢ (((k - 1) ⋅r 1)*atom(x)(y:=(atom(x)+atom(y)))+atom(y)(y:=(atom(x)+atom(y))))
= ((k ⋅r 1)*atom(x)+atom(y))
∈ PowerSeries(r)
Latex:
Latex:
.....subterm.....  T:t
3:n
1.  r  :  CRng
2.  x  :  Atom
3.  y  :  Atom
4.  \mneg{}(x  =  y)
5.  h  :  PowerSeries(r)
6.  d  :  \mBbbN{}  {}\mrightarrow{}  \mBbbN{}
7.  k  :  \mBbbZ{}
8.  k  \mmember{}  \mBbbN{}
9.  k  \mneq{}  0
10.  0  <  k
11.  [Moessner-aux(r;x;y;h;d;k  -  1)]\_\mSigma{}(d  i  |  i  <  k)
=  ([h]\_d  0(y:=(((k  -  1)  \mcdot{}r  1)*atom(x)+atom(y)))*\mPi{}(i\mmember{}upto(k 
    -  1)).((((k  -  1  -  i)  \mcdot{}r  1)*atom(x)+atom(y)))\^{}(d  (i  +  1)))
12.  \mSigma{}(d  i  |  i  <  k)  \mmember{}  \mBbbN{}
13.  \mSigma{}(d  i  |  i  <  k  +  1)  \mmember{}  \mBbbN{}
14.  [([h]\_d  0(y:=(((k  -  1)  \mcdot{}r  1)*atom(x)+atom(y)))*\mPi{}(i\mmember{}upto(k 
-  1)).((((k  -  1  -  i)  \mcdot{}r  1)*atom(x)+atom(y)))\^{}(d  (i  +  1)))]\_\mSigma{}(d  i  |  i  <  k)
=  ([h]\_d  0(y:=(((k  -  1)  \mcdot{}r  1)*atom(x)+atom(y)))*\mPi{}(i\mmember{}upto(k 
    -  1)).((((k  -  1  -  i)  \mcdot{}r  1)*atom(x)+atom(y)))\^{}(d  (i  +  1)))
15.  \mSigma{}(d  i  |  i  <  k)  \mleq{}  \mSigma{}(d  i  |  i  <  k  +  1)
\mvdash{}  [h]\_d  0(y:=(((k  -  1)  \mcdot{}r  1)*atom(x)+atom(y)))(y:=(atom(x)+atom(y)))
=  [h]\_d  0(y:=((k  \mcdot{}r  1)*atom(x)+atom(y)))
By
Latex:
((RWW  "fps-compose-compose  fps-compose-add  fps-compose-scalar-mul"  0  THEN  Auto)  THEN  EqCD  THEN  Auto)
\mcdot{}
Home
Index