Nuprl Lemma : KozenSilva-theorem

[r:CRng]. ∀[x,y:Atom].
  ∀[h:PowerSeries(r)]. ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].
    (Moessner(r;x;y;h;d;k)
    ([h]_d 0(y:=((k ⋅1)*atom(x)+atom(y)))*Π(i∈upto(k)).((((k i) ⋅1)*atom(x)+atom(y)))^(d (i 1)))
    ∈ PowerSeries(r)) 
  supposing ¬(x y ∈ Atom)


Proof




Definitions occuring in Statement :  Moessner: Moessner(r;x;y;h;d;k) fps-compose: g(x:=f) fps-exp: (f)^(n) fps-scalar-mul: (c)*f fps-product: Π(x∈b).f[x] fps-slice: [f]_n fps-mul: (f*g) fps-add: (f+g) fps-atom: atom(x) power-series: PowerSeries(X;r) upto: upto(n) atom-deq: AtomDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n atom: Atom equal: t ∈ T rng_nat_op: n ⋅e crng: CRng rng_one: 1
Definitions unfolded in proof :  Moessner: Moessner(r;x;y;h;d;k) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: Moessner-aux: Moessner-aux(r;x;y;h;d;k) eq_int: (i =z j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  upto: upto(n) from-upto: [n, m) lt_int: i <j bfalse: ff subtype_rel: A ⊆B or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) nequal: a ≠ b ∈  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] bag-accum: bag-accum(v,x.f[v; x];init;bs) bag-summation: Σ(x∈b). f[x] bag-product: Πx ∈ b. f[x] fps-product: Π(x∈b).f[x] so_apply: x[s] so_lambda: λ2x.t[x] rng_zero: 0 add_grp_of_rng: r↓+gp pi2: snd(t) pi1: fst(t) grp_id: e ycomb: Y itop: Π(op,id) lb ≤ i < ub. E[i] nat_op: x(op;id) e mon_nat_op: n ⋅ e rng_nat_op: n ⋅e less_than': less_than'(a;b) le: A ≤ B rev_implies:  Q iff: ⇐⇒ Q squash: T true: True decidable: Dec(P) int_seg: {i..j-} lelt: i ≤ j < k crng: CRng rng: Rng istype: istype(T) nat_plus: + cand: c∧ B atom-deq: AtomDeq empty-bag: {} fps-atom: atom(x) fps-add: (f+g) fps-coeff: f[b] single-bag: {x} fps-single: <c> bag-eq: bag-eq(eq;as;bs) bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) band: p ∧b q infix_ap: y bag-append: as bs
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than btrue_wf eqtt_to_assert assert_of_eq_int eqff_to_assert eq_int_wf bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf assert-bnot neg_assert_of_eq_int intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma subtract-1-ge-0 subtract-add-cancel int_subtype_base istype-nat power-series_wf atom_subtype_base istype-atom crng_wf list_accum_nil_lemma sum-unroll le_wf false_wf nat_wf zero-add iff_weakening_equal fps-compose-identity equal_wf fps-zero_wf fps-add_wf fps-compose_wf fps-one_wf atom-valueall-type fps-atom_wf atom-deq_wf fps-slice_wf mul_one_fps abmonoid_comm_fps mon_ident_fps squash_wf true_wf fps-mul_wf valueall-type_wf deq_wf fps-scalar-mul-zero subtype_rel_self decidable__le istype-le sum_wf int_seg_subtype_nat istype-false int_seg_wf non_neg_sum int_seg_properties itermAdd_wf int_term_value_add_lemma fps-pascal_wf fps-scalar-mul_wf rng_nat_op_wf rng_one_wf fps-product_wf fps-exp_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma list-subtype-bag Moessner-aux_wf fps-set-to-one_wf fps-set-to-one-slice istype-universe fps-slice-slice sum_split1 decidable__lt not-lt-2 not-equal-2 less-iff-le condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel add-subtract-cancel upto_wf KozenSilva-lemma fps-compose-mul fps-mul-assoc fps-compose-compose fps-compose-add fps-compose-scalar-mul neg_assert_of_eq_atom assert_of_eq_atom eq_atom_wf rng_zero_wf rng_car_wf fps-compose-atom reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma rng_plus_zero fps-add-assoc fps-scalar-mul-one rng_nat_op_one fps-scalar-mul-rng-add rng_nat_op_add upto_decomp1 decidable__equal_int fps-compose-fps-product bag-append_wf subtype_rel_bag int_seg_subtype not-le-2 add-swap add-mul-special zero-mul le-add-cancel2 single-bag_wf fps-product-append fps-product-single fps-compose-exp nat_plus_properties minus-minus
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination because_Cache equalityIsType4 baseClosed baseApply closedConclusion applyEquality promote_hyp instantiate cumulativity equalityIsType1 isectIsTypeImplies functionIsType atomEquality voidEquality isect_memberEquality lambdaFormation dependent_set_memberEquality functionExtensionality imageMemberEquality imageElimination lambdaEquality universeEquality dependent_set_memberEquality_alt applyLambdaEquality addEquality hyp_replacement intEquality dependent_pairFormation equalityIsType3 minusEquality multiplyEquality productIsType

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].
    \mforall{}[h:PowerSeries(r)].  \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
        (Moessner(r;x;y;h;d;k)
        =  ([h]\_d  0(y:=((k  \mcdot{}r  1)*atom(x)+atom(y)))*\mPi{}(i\mmember{}upto(k)).((((k  -  i)  \mcdot{}r  1)*atom(x)
                                                                                                                          +atom(y)))\^{}(d  (i  +  1)))) 
    supposing  \mneg{}(x  =  y)



Date html generated: 2019_10_16-AM-11_36_49
Last ObjectModification: 2018_10_19-AM-00_13_17

Theory : power!series


Home Index