Nuprl Lemma : fps-compose-atom
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X]. ∀[f:PowerSeries(X;r)].
    atom(y)(x:=f) = if eq y x then f else atom(y) fi  ∈ PowerSeries(X;r) supposing f[{}] = 0 ∈ |r| 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f)
, 
fps-atom: atom(x)
, 
fps-coeff: f[b]
, 
power-series: PowerSeries(X;r)
, 
empty-bag: {}
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
ifthenelse: if b then t else f fi 
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
deq: EqDecider(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
eqof: eqof(d)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
crng: CRng
, 
rng: Rng
, 
fps-coeff: f[b]
, 
fps-one: 1
, 
fps-scalar-mul: (c)*f
, 
fps-sub: (f-g)
, 
fps-neg: -(f)
, 
fps-add: (f+g)
, 
power-series: PowerSeries(X;r)
, 
infix_ap: x f y
Lemmas referenced : 
bool_wf, 
eqtt_to_assert, 
safe-assert-deq, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
squash_wf, 
true_wf, 
power-series_wf, 
fps-compose-atom-neq, 
fps-atom_wf, 
iff_weakening_equal, 
rng_car_wf, 
fps-coeff_wf, 
empty-bag_wf, 
rng_zero_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-compose-atom-eq, 
fps-compose_wf, 
fps-ext, 
fps-sub_wf, 
fps-scalar-mul_wf, 
fps-one_wf, 
bag-null_wf, 
assert-bag-null, 
equal-wf-T-base, 
bag_wf, 
rng_plus_wf, 
rng_minus_wf, 
rng_one_wf, 
rng_times_zero, 
rng_minus_zero, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
hypothesis, 
extract_by_obid, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
independent_functionElimination, 
voidElimination, 
cumulativity, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality, 
axiomEquality, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].  \mforall{}[f:PowerSeries(X;r)].
        atom(y)(x:=f)  =  if  eq  y  x  then  f  else  atom(y)  fi    supposing  f[\{\}]  =  0 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_06_11
Last ObjectModification:
2017_07_26-PM-06_34_12
Theory : power!series
Home
Index