Nuprl Lemma : fps-compose-atom

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x,y:X]. ∀[f:PowerSeries(X;r)].
    atom(y)(x:=f) if eq then else atom(y) fi  ∈ PowerSeries(X;r) supposing f[{}] 0 ∈ |r| 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-atom: atom(x) fps-coeff: f[b] power-series: PowerSeries(X;r) empty-bag: {} deq: EqDecider(T) valueall-type: valueall-type(T) ifthenelse: if then else fi  uimplies: supposing a uall: [x:A]. B[x] apply: a universe: Type equal: t ∈ T crng: CRng rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a deq: EqDecider(T) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q eqof: eqof(d) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q crng: CRng rng: Rng fps-coeff: f[b] fps-one: 1 fps-scalar-mul: (c)*f fps-sub: (f-g) fps-neg: -(f) fps-add: (f+g) power-series: PowerSeries(X;r) infix_ap: y
Lemmas referenced :  bool_wf eqtt_to_assert safe-assert-deq eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot squash_wf true_wf power-series_wf fps-compose-atom-neq fps-atom_wf iff_weakening_equal rng_car_wf fps-coeff_wf empty-bag_wf rng_zero_wf crng_wf deq_wf valueall-type_wf fps-compose-atom-eq fps-compose_wf fps-ext fps-sub_wf fps-scalar-mul_wf fps-one_wf bag-null_wf assert-bag-null equal-wf-T-base bag_wf rng_plus_wf rng_minus_wf rng_one_wf rng_times_zero rng_minus_zero rng_plus_zero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality hypothesis extract_by_obid lambdaFormation unionElimination equalityElimination isectElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination cumulativity lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality isect_memberEquality axiomEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x,y:X].  \mforall{}[f:PowerSeries(X;r)].
        atom(y)(x:=f)  =  if  eq  y  x  then  f  else  atom(y)  fi    supposing  f[\{\}]  =  0 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_06_11
Last ObjectModification: 2017_07_26-PM-06_34_12

Theory : power!series


Home Index