Nuprl Lemma : Moessner-aux_wf

[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[d:ℕ ⟶ ℕ]. ∀[k:ℕ].  (Moessner-aux(r;x;y;h;d;k) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  Moessner-aux: Moessner-aux(r;x;y;h;d;k) power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: Moessner-aux: Moessner-aux(r;x;y;h;d;k) eq_int: (i =z j) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtract: m sum: Σ(f[x] x < k) sum_aux: sum_aux(k;v;i;x.f[x]) nequal: a ≠ b ∈  decidable: Dec(P) so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf btrue_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert eq_int_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int fps-mul_wf intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma atom-deq_wf fps-set-to-one_wf fps-pascal_wf decidable__le subtract_wf itermSubtract_wf int_term_value_subtract_lemma sum_wf le_wf non_neg_sum nat_wf int_seg_subtype_nat false_wf int_seg_wf int_seg_properties power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination equalityElimination productElimination because_Cache promote_hyp instantiate cumulativity atomEquality dependent_set_memberEquality applyEquality functionExtensionality applyLambdaEquality functionEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[h:PowerSeries(r)].  \mforall{}[d:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[k:\mBbbN{}].
    (Moessner-aux(r;x;y;h;d;k)  \mmember{}  PowerSeries(r))



Date html generated: 2018_05_21-PM-10_13_44
Last ObjectModification: 2017_07_26-PM-06_35_27

Theory : power!series


Home Index