Nuprl Lemma : fps-set-to-one-slice
∀[r:CRng]. ∀[y:Atom]. ∀[n,k:ℕ]. ∀[f:PowerSeries(r)].
  ([[f]_k]_n(y:=1) = if (k =z n) then [f]_n(y:=1) else 0 fi  ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
fps-set-to-one: [f]_n(y:=1)
, 
fps-slice: [f]_n
, 
fps-zero: 0
, 
power-series: PowerSeries(X;r)
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
fps-zero: 0
, 
fps-set-to-one: [f]_n(y:=1)
, 
fps-coeff: f[b]
, 
fps-slice: [f]_n
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
bor: p ∨bq
, 
crng: CRng
, 
rng: Rng
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
fps-ext, 
fps-set-to-one_wf, 
fps-slice_wf, 
ifthenelse_wf, 
eq_int_wf, 
power-series_wf, 
fps-zero_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
lt_int_wf, 
bag-count_wf, 
atom-deq_wf, 
assert_of_lt_int, 
nat_wf, 
rng_zero_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
bag-size_wf, 
bag-size-append, 
bag-size-rep, 
subtract_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
bag-append_wf, 
bag-rep_wf, 
list-subtype-bag, 
neg_assert_of_eq_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
add-is-int-iff, 
subtract-is-int-iff, 
false_wf, 
bag_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
atomEquality, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
independent_isectElimination, 
lambdaFormation, 
sqequalRule, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
dependent_set_memberEquality, 
approximateComputation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
axiomEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[y:Atom].  \mforall{}[n,k:\mBbbN{}].  \mforall{}[f:PowerSeries(r)].
    ([[f]\_k]\_n(y:=1)  =  if  (k  =\msubz{}  n)  then  [f]\_n(y:=1)  else  0  fi  )
Date html generated:
2018_05_21-PM-10_13_10
Last ObjectModification:
2018_05_19-PM-04_16_44
Theory : power!series
Home
Index