Nuprl Lemma : fps-compose-fps-product

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)]. ∀[T:Type]. ∀[b:bag(T)]. ∀[G:T ⟶ PowerSeries(X;r)].
    (i∈b).G[i](x:=f) = Π(i∈b).G[i](x:=f) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-product: Π(x∈b).f[x] power-series: PowerSeries(X;r) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-product: Π(x∈b).f[x] bag-product: Πx ∈ b. f[x] squash: T exists: x:A. B[x] so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] subtype_rel: A ⊆B cand: c∧ B implies:  Q empty-bag: {} all: x:A. B[x] cons-bag: x.b prop: infix_ap: y true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q top: Top assoc: Assoc(T;op) comm: Comm(T;op) monoid_p: IsMonoid(T;op;id) ident: Ident(T;op;id)
Lemmas referenced :  bag_to_squash_list list_induction equal_wf power-series_wf fps-compose_wf bag-summation_wf fps-mul_wf fps-one_wf list-subtype-bag list_wf bag_wf crng_wf deq_wf valueall-type_wf squash_wf true_wf mul_assoc_fps iff_weakening_equal fps-mul-comm single-bag_wf bag-summation-empty fps-compose-one cons-bag-as-append bag-summation-single bag-summation-append mul_one_fps fps-compose-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename sqequalRule lambdaEquality cumulativity because_Cache independent_isectElimination applyEquality functionExtensionality independent_pairFormation independent_functionElimination lambdaFormation dependent_functionElimination hyp_replacement equalitySymmetry applyLambdaEquality functionEquality isect_memberEquality axiomEquality universeEquality equalityTransitivity natural_numberEquality imageMemberEquality baseClosed voidElimination voidEquality equalityUniverse levelHypothesis independent_pairEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[T:Type].  \mforall{}[b:bag(T)].
    \mforall{}[G:T  {}\mrightarrow{}  PowerSeries(X;r)].
        (\mPi{}(i\mmember{}b).G[i](x:=f)  =  \mPi{}(i\mmember{}b).G[i](x:=f)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_10_10
Last ObjectModification: 2017_07_26-PM-06_34_19

Theory : power!series


Home Index