Nuprl Lemma : fps-compose-fps-product
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f:PowerSeries(X;r)]. ∀[T:Type]. ∀[b:bag(T)]. ∀[G:T ⟶ PowerSeries(X;r)].
    (Π(i∈b).G[i](x:=f) = Π(i∈b).G[i](x:=f) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f)
, 
fps-product: Π(x∈b).f[x]
, 
power-series: PowerSeries(X;r)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fps-product: Π(x∈b).f[x]
, 
bag-product: Πx ∈ b. f[x]
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
empty-bag: {}
, 
all: ∀x:A. B[x]
, 
cons-bag: x.b
, 
prop: ℙ
, 
infix_ap: x f y
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
top: Top
, 
assoc: Assoc(T;op)
, 
comm: Comm(T;op)
, 
monoid_p: IsMonoid(T;op;id)
, 
ident: Ident(T;op;id)
Lemmas referenced : 
bag_to_squash_list, 
list_induction, 
equal_wf, 
power-series_wf, 
fps-compose_wf, 
bag-summation_wf, 
fps-mul_wf, 
fps-one_wf, 
list-subtype-bag, 
list_wf, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
squash_wf, 
true_wf, 
mul_assoc_fps, 
iff_weakening_equal, 
fps-mul-comm, 
single-bag_wf, 
bag-summation-empty, 
fps-compose-one, 
cons-bag-as-append, 
bag-summation-single, 
bag-summation-append, 
mul_one_fps, 
fps-compose-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
applyEquality, 
functionExtensionality, 
independent_pairFormation, 
independent_functionElimination, 
lambdaFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
functionEquality, 
isect_memberEquality, 
axiomEquality, 
universeEquality, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
voidElimination, 
voidEquality, 
equalityUniverse, 
levelHypothesis, 
independent_pairEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f:PowerSeries(X;r)].  \mforall{}[T:Type].  \mforall{}[b:bag(T)].
    \mforall{}[G:T  {}\mrightarrow{}  PowerSeries(X;r)].
        (\mPi{}(i\mmember{}b).G[i](x:=f)  =  \mPi{}(i\mmember{}b).G[i](x:=f)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_10_10
Last ObjectModification:
2017_07_26-PM-06_34_19
Theory : power!series
Home
Index