Nuprl Lemma : fps-product-single

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[T:Type]. ∀[f:T ⟶ PowerSeries(X;r)]. ∀[t:T].
    (x∈{t}).f[x] f[t] ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-product: Π(x∈b).f[x] power-series: PowerSeries(X;r) single-bag: {x} deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-product: Π(x∈b).f[x] bag-product: Πx ∈ b. f[x] and: P ∧ Q cand: c∧ B monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) infix_ap: y squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q ident: Ident(T;op;id) comm: Comm(T;op) so_apply: x[s] prop: so_lambda: λ2x.t[x]
Lemmas referenced :  power-series_wf crng_wf deq_wf valueall-type_wf fps-mul_wf fps-one_wf equal_wf mul_assoc_fps iff_weakening_equal fps-mul-comm squash_wf true_wf bag-summation-single mul_one_fps
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache functionEquality cumulativity extract_by_obid universeEquality equalityTransitivity equalitySymmetry lambdaEquality independent_isectElimination independent_pairFormation applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination independent_pairEquality functionExtensionality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[t:T].
        (\mPi{}(x\mmember{}\{t\}).f[x]  =  f[t]) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_16
Last ObjectModification: 2017_07_26-PM-06_33_18

Theory : power!series


Home Index