Nuprl Lemma : fps-compose-exp

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f:PowerSeries(X;r)]. ∀[n:ℕ].
    ((g)^(n)(x:=f) (g(x:=f))^(n) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-exp: (f)^(n) power-series: PowerSeries(X;r) deq: EqDecider(T) nat: valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: implies:  Q false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q true: True squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q nat_plus: +
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf power-series_wf crng_wf deq_wf valueall-type_wf fps-compose_wf fps-one_wf equal_wf squash_wf true_wf fps-exp-zero fps-compose-one iff_weakening_equal fps-compose-mul fps-exp_wf le_wf fps-mul_wf fps-exp-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality unionElimination because_Cache cumulativity equalityTransitivity equalitySymmetry universeEquality applyEquality imageElimination imageMemberEquality baseClosed productElimination dependent_set_memberEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f:PowerSeries(X;r)].  \mforall{}[n:\mBbbN{}].
        ((g)\^{}(n)(x:=f)  =  (g(x:=f))\^{}(n)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_09_55
Last ObjectModification: 2017_07_26-PM-06_34_16

Theory : power!series


Home Index