Nuprl Lemma : fps-compose-exp
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f:PowerSeries(X;r)]. ∀[n:ℕ].
    ((g)^(n)(x:=f) = (g(x:=f))^(n) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f)
, 
fps-exp: (f)^(n)
, 
power-series: PowerSeries(X;r)
, 
deq: EqDecider(T)
, 
nat: ℕ
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
true: True
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
nat_wf, 
power-series_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
fps-compose_wf, 
fps-one_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fps-exp-zero, 
fps-compose-one, 
iff_weakening_equal, 
fps-compose-mul, 
fps-exp_wf, 
le_wf, 
fps-mul_wf, 
fps-exp-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
axiomEquality, 
unionElimination, 
because_Cache, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f:PowerSeries(X;r)].  \mforall{}[n:\mBbbN{}].
        ((g)\^{}(n)(x:=f)  =  (g(x:=f))\^{}(n)) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_09_55
Last ObjectModification:
2017_07_26-PM-06_34_16
Theory : power!series
Home
Index