Nuprl Lemma : fps-product_wf

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[T:Type]. ∀[f:T ⟶ PowerSeries(X;r)]. ∀[b:bag(T)].  (x∈b).f[x] ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-product: Π(x∈b).f[x] power-series: PowerSeries(X;r) bag: bag(T) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-product: Π(x∈b).f[x] so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B assoc: Assoc(T;op) infix_ap: y squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q comm: Comm(T;op)
Lemmas referenced :  bag-product_wf power-series_wf fps-mul_wf fps-one_wf equal_wf squash_wf true_wf mul_assoc_fps iff_weakening_equal fps-mul-comm bag_wf crng_wf deq_wf valueall-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination applyEquality functionExtensionality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination isect_memberEquality axiomEquality independent_pairFormation functionEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[b:bag(T)].
        (\mPi{}(x\mmember{}b).f[x]  \mmember{}  PowerSeries(X;r)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_57_09
Last ObjectModification: 2017_07_26-PM-06_33_13

Theory : power!series


Home Index