Nuprl Lemma : fps-product-append
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[T:Type]. ∀[f:T ⟶ PowerSeries(X;r)]. ∀[b,c:bag(T)].
    (Π(x∈b + c).f[x] = (Π(x∈b).f[x]*Π(x∈c).f[x]) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-product: Π(x∈b).f[x]
, 
fps-mul: (f*g)
, 
power-series: PowerSeries(X;r)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
fps-product: Π(x∈b).f[x]
, 
bag-product: Πx ∈ b. f[x]
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
ident: Ident(T;op;id)
, 
comm: Comm(T;op)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
power-series_wf, 
bag-summation-append, 
fps-mul_wf, 
fps-one_wf, 
mul_assoc_fps, 
iff_weakening_equal, 
fps-mul-comm, 
bag_wf, 
crng_wf, 
deq_wf, 
valueall-type_wf, 
mul_one_fps, 
bag-summation_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
independent_isectElimination, 
independent_pairFormation, 
sqequalRule, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
independent_pairEquality, 
functionExtensionality, 
universeEquality, 
functionEquality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  PowerSeries(X;r)].  \mforall{}[b,c:bag(T)].
        (\mPi{}(x\mmember{}b  +  c).f[x]  =  (\mPi{}(x\mmember{}b).f[x]*\mPi{}(x\mmember{}c).f[x])) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-09_57_14
Last ObjectModification:
2017_07_26-PM-06_33_16
Theory : power!series
Home
Index