Nuprl Lemma : fps-compose-compose

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)]. ∀[x:X].  (f(x:=g)(x:=h) f(x:=g(x:=h)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q crng: CRng rng: Rng compose: g exists: x:A. B[x] uiff: uiff(P;Q) fps-one: 1 fps-coeff: f[b] fps-single: <c> empty-bag: {} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A cons-bag: x.b top: Top fps-atom: atom(x) deq: EqDecider(T) eqof: eqof(d) fps-compose: g(x:=f) bag-product: Πx ∈ b. f[x] bag-rep: bag-rep(n;x) bag-append: as bs bag-parts': bag-parts'(eq;bs;x) bag-summation: Σ(x∈b). f[x] bag-null: bag-null(bs) null: null(as) nil: [] callbyvalueall: callbyvalueall evalall: evalall(t) bag-parts: bag-parts(eq;bs) bag-partitions: bag-partitions(eq;bs) bag-splits: bag-splits(b) list_ind: list_ind single-bag: {x} cons: [a b] bag-to-set: bag-to-set(eq;bs) bag-remove-repeats: bag-remove-repeats(eq;bs) list-to-set: list-to-set(eq;L) l-union: as ⋃ bs reduce: reduce(f;k;as) insert: insert(a;L) eval_list: eval_list(t) deq-member: x ∈b L bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) concat: concat(ll) bag-map: bag-map(f;bs) map: map(f;as) append: as bs pi1: fst(t) bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] power-series: PowerSeries(X;r) infix_ap: y
Lemmas referenced :  fps-linear-ucont-equal fps-compose_wf power-series_wf equal_wf squash_wf true_wf fps-compose-add fps-add_wf iff_weakening_equal rng_car_wf fps-compose-scalar-mul fps-scalar-mul_wf bag_wf crng_wf valueall-type_wf fps-ucont-composition fps-compose-ucont bag_to_squash_list list_induction fps-single_wf list-subtype-bag list_wf fps-ext nil_wf fps-one_wf bag-eq_wf empty-bag_wf bool_wf eqtt_to_assert assert-bag-eq bag-null_wf assert-bag-null rng_one_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base rng_zero_wf fps-compose-one deq_wf single-bag_wf cons-bag-as-append fps-mul-single fps-mul_wf fps-compose-mul safe-assert-deq fps-atom_wf fps-coeff_wf fps-sub_wf fps-compose-atom-eq fps-compose-sub list_accum_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma list_accum_nil_lemma list_ind_nil_lemma length_of_nil_lemma primrec0_lemma rng_plus_wf rng_times_one rng_plus_zero fps-compose-atom-neq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality sqequalRule lambdaEquality cumulativity independent_pairFormation lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination setElimination rename isect_memberEquality axiomEquality dependent_functionElimination promote_hyp hyp_replacement applyLambdaEquality voidEquality voidElimination unionElimination equalityElimination dependent_pairFormation instantiate equalityUniverse levelHypothesis callbyvalueReduce sqleReflexivity functionExtensionality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].  \mforall{}[x:X].
        (f(x:=g)(x:=h)  =  f(x:=g(x:=h))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_11_40
Last ObjectModification: 2017_07_26-PM-06_34_45

Theory : power!series


Home Index