Nuprl Lemma : fps-compose-compose
∀[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g,h:PowerSeries(X;r)]. ∀[x:X].  (f(x:=g)(x:=h) = f(x:=g(x:=h)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
Proof
Definitions occuring in Statement : 
fps-compose: g(x:=f), 
power-series: PowerSeries(X;r), 
deq: EqDecider(T), 
valueall-type: valueall-type(T), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
crng: CRng, 
rng: Rng, 
compose: f o g, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q), 
fps-one: 1, 
fps-coeff: f[b], 
fps-single: <c>, 
empty-bag: {}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
cons-bag: x.b, 
top: Top, 
fps-atom: atom(x), 
deq: EqDecider(T), 
eqof: eqof(d), 
fps-compose: g(x:=f), 
bag-product: Πx ∈ b. f[x], 
bag-rep: bag-rep(n;x), 
bag-append: as + bs, 
bag-parts': bag-parts'(eq;bs;x), 
bag-summation: Σ(x∈b). f[x], 
bag-null: bag-null(bs), 
null: null(as), 
nil: [], 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bag-parts: bag-parts(eq;bs), 
bag-partitions: bag-partitions(eq;bs), 
bag-splits: bag-splits(b), 
list_ind: list_ind, 
single-bag: {x}, 
cons: [a / b], 
bag-to-set: bag-to-set(eq;bs), 
bag-remove-repeats: bag-remove-repeats(eq;bs), 
list-to-set: list-to-set(eq;L), 
l-union: as ⋃ bs, 
reduce: reduce(f;k;as), 
insert: insert(a;L), 
eval_list: eval_list(t), 
deq-member: x ∈b L, 
bag-combine: ⋃x∈bs.f[x], 
bag-union: bag-union(bbs), 
concat: concat(ll), 
bag-map: bag-map(f;bs), 
map: map(f;as), 
append: as @ bs, 
pi1: fst(t), 
bag-accum: bag-accum(v,x.f[v; x];init;bs), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
power-series: PowerSeries(X;r), 
infix_ap: x f y
Lemmas referenced : 
fps-linear-ucont-equal, 
fps-compose_wf, 
power-series_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fps-compose-add, 
fps-add_wf, 
iff_weakening_equal, 
rng_car_wf, 
fps-compose-scalar-mul, 
fps-scalar-mul_wf, 
bag_wf, 
crng_wf, 
valueall-type_wf, 
fps-ucont-composition, 
fps-compose-ucont, 
bag_to_squash_list, 
list_induction, 
fps-single_wf, 
list-subtype-bag, 
list_wf, 
fps-ext, 
nil_wf, 
fps-one_wf, 
bag-eq_wf, 
empty-bag_wf, 
bool_wf, 
eqtt_to_assert, 
assert-bag-eq, 
bag-null_wf, 
assert-bag-null, 
rng_one_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
rng_zero_wf, 
fps-compose-one, 
deq_wf, 
single-bag_wf, 
cons-bag-as-append, 
fps-mul-single, 
fps-mul_wf, 
fps-compose-mul, 
safe-assert-deq, 
fps-atom_wf, 
fps-coeff_wf, 
fps-sub_wf, 
fps-compose-atom-eq, 
fps-compose-sub, 
list_accum_cons_lemma, 
reduce_hd_cons_lemma, 
reduce_tl_cons_lemma, 
list_accum_nil_lemma, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
primrec0_lemma, 
rng_plus_wf, 
rng_times_one, 
rng_plus_zero, 
fps-compose-atom-neq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
productElimination, 
independent_functionElimination, 
setElimination, 
rename, 
isect_memberEquality, 
axiomEquality, 
dependent_functionElimination, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
voidEquality, 
voidElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
instantiate, 
equalityUniverse, 
levelHypothesis, 
callbyvalueReduce, 
sqleReflexivity, 
functionExtensionality
Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g,h:PowerSeries(X;r)].  \mforall{}[x:X].
        (f(x:=g)(x:=h)  =  f(x:=g(x:=h))) 
    supposing  valueall-type(X)
Date html generated:
2018_05_21-PM-10_11_40
Last ObjectModification:
2017_07_26-PM-06_34_45
Theory : power!series
Home
Index