Nuprl Lemma : fps-compose-sub

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[g,f,h:PowerSeries(X;r)].
    ((g-h)(x:=f) (g(x:=f)-h(x:=f)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-compose: g(x:=f) fps-sub: (f-g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fps-sub: (f-g) true: True squash: T prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  power-series_wf crng_wf deq_wf valueall-type_wf fps-neg_wf fps-compose_wf fps-add_wf equal_wf squash_wf true_wf fps-compose-add fps-compose-neg iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_isectElimination natural_numberEquality applyEquality lambdaEquality imageElimination imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[g,f,h:PowerSeries(X;r)].
        ((g-h)(x:=f)  =  (g(x:=f)-h(x:=f))) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_45
Last ObjectModification: 2017_07_26-PM-06_34_03

Theory : power!series


Home Index