Step * of Lemma fps-deriv-compose

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (df(x:=g)/dx (df/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)
BY
(Auto
   THEN (InstLemma `fps-linear-ucont-equal` [⌜X⌝;⌜eq⌝;⌜r⌝;⌜λ2f.df(x:=g)/dx⌝;⌜λ2f.(df/dx(x:=g)*dg/dx)⌝]⋅ THENA Auto)
   }

1
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
⊢ fps-ucont(X;eq;r;f.df(x:=g)/dx)

2
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. fps-ucont(X;eq;r;f.df(x:=g)/dx)
⊢ fps-ucont(X;eq;r;f.(df/dx(x:=g)*dg/dx))

3
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. fps-ucont(X;eq;r;f.df(x:=g)/dx)
9. fps-ucont(X;eq;r;f.(df/dx(x:=g)*dg/dx))
10. ∀f,g@0:PowerSeries(X;r).  (d(f+g@0)(x:=g)/dx (df(x:=g)/dx+dg@0(x:=g)/dx) ∈ PowerSeries(X;r))
11. f1 PowerSeries(X;r)
12. g@0 PowerSeries(X;r)
⊢ (d(f1+g@0)/dx(x:=g)*dg/dx) ((df1/dx(x:=g)*dg/dx)+(dg@0/dx(x:=g)*dg/dx)) ∈ PowerSeries(X;r)

4
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. fps-ucont(X;eq;r;f.df(x:=g)/dx)
9. fps-ucont(X;eq;r;f.(df/dx(x:=g)*dg/dx))
10. ∀f,g@0:PowerSeries(X;r).  (d(f+g@0)(x:=g)/dx (df(x:=g)/dx+dg@0(x:=g)/dx) ∈ PowerSeries(X;r))
11. ∀f,g@0:PowerSeries(X;r).
      ((d(f+g@0)/dx(x:=g)*dg/dx) ((df/dx(x:=g)*dg/dx)+(dg@0/dx(x:=g)*dg/dx)) ∈ PowerSeries(X;r))
12. ∀c:|r|. ∀f:PowerSeries(X;r).  (d(c)*f(x:=g)/dx (c)*df(x:=g)/dx ∈ PowerSeries(X;r))
13. |r|
14. f1 PowerSeries(X;r)
⊢ (d(c)*f1/dx(x:=g)*dg/dx) (c)*(df1/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r)

5
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. fps-ucont(X;eq;r;f.df(x:=g)/dx)
9. fps-ucont(X;eq;r;f.(df/dx(x:=g)*dg/dx))
10. ∀f,g@0:PowerSeries(X;r).  (d(f+g@0)(x:=g)/dx (df(x:=g)/dx+dg@0(x:=g)/dx) ∈ PowerSeries(X;r))
11. ∀f,g@0:PowerSeries(X;r).
      ((d(f+g@0)/dx(x:=g)*dg/dx) ((df/dx(x:=g)*dg/dx)+(dg@0/dx(x:=g)*dg/dx)) ∈ PowerSeries(X;r))
12. ∀c:|r|. ∀f:PowerSeries(X;r).  (d(c)*f(x:=g)/dx (c)*df(x:=g)/dx ∈ PowerSeries(X;r))
13. ∀c:|r|. ∀f:PowerSeries(X;r).  ((d(c)*f/dx(x:=g)*dg/dx) (c)*(df/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r))
14. bag(X)
⊢ d<b>(x:=g)/dx (d<b>/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r)

6
1. Type
2. valueall-type(X)
3. eq EqDecider(X)
4. CRng
5. PowerSeries(X;r)
6. PowerSeries(X;r)
7. X
8. λ2f.df(x:=g)/dx = λ2f.(df/dx(x:=g)*dg/dx) ∈ (PowerSeries(X;r) ⟶ PowerSeries(X;r))
⊢ df(x:=g)/dx (df/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r)


Latex:


Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (df(x:=g)/dx  =  (df/dx(x:=g)*dg/dx)) 
    supposing  valueall-type(X)


By


Latex:
(Auto
  THEN  (InstLemma  `fps-linear-ucont-equal`  [\mkleeneopen{}X\mkleeneclose{};\mkleeneopen{}eq\mkleeneclose{};\mkleeneopen{}r\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}f.df(x:=g)/dx\mkleeneclose{};\mkleeneopen{}\mlambda{}\msubtwo{}f.(df/dx(x:=g)*dg/dx)\mkleeneclose{}]
              \mcdot{}
              THENA  Auto
              )
  )




Home Index