Nuprl Lemma : fps-deriv-compose

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f,g:PowerSeries(X;r)]. ∀[x:X].
    (df(x:=g)/dx (df/dx(x:=g)*dg/dx) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-deriv: df/dx fps-compose: g(x:=f) fps-mul: (f*g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] and: P ∧ Q cand: c∧ B all: x:A. B[x] squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q crng: CRng rng: Rng compose: g prop: nat: decidable: Dec(P) or: P ∨ Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) fps-sub: (f-g) power-series: PowerSeries(X;r) fps-zero: 0 fps-coeff: f[b] empty-bag: {} fps-scalar-mul: (c)*f fps-neg: -(f) infix_ap: y nat_plus: + subtract: m le: A ≤ B less_than': less_than'(a;b) fps-deriv: df/dx fps-mul: (f*g)
Lemmas referenced :  fps-linear-ucont-equal fps-deriv_wf fps-compose_wf power-series_wf fps-mul_wf equal_wf fps-compose-add fps-add_wf iff_weakening_equal fps-deriv-add fps-compose-scalar-mul fps-scalar-mul_wf fps-deriv-scalar-mul rng_car_wf bag_wf crng_wf deq_wf valueall-type_wf fps-ucont-composition fps-deriv-ucont fps-compose-ucont fps-mul-ucont squash_wf true_wf subtype_rel_self mul_over_plus_fps fps-scalar-mul-mul fps-single_wf int-to-ring_wf bag-count_wf nat_wf bag-drop_wf fps-deriv-single fps-sub_wf fps-coeff_wf empty-bag_wf fps-one_wf fps-compose-single-general fps-deriv-mul bag-co-restrict_wf fps-exp_wf bag-size_wf bag-restrict_wf fps-zero_wf subtype_base_sq set_subtype_base le_wf int_subtype_base decidable__le nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf bag-count-is-zero bag-co-restrict-property int-to-ring-zero fps-scalar-mul-zero mul_zero_fps mul_comm_fps mon_ident_fps fps-mul-assoc bag-drop-co-restrict bag-size-restrict decidable__equal_int rng_zero_wf fps-deriv-one fps-exp-zero bag-count-drop intformeq_wf itermAdd_wf itermSubtract_wf int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_subtract_lemma bag-member-count fps-neg_wf fps-deriv-neg fps-ext rng_minus_wf nil_wf list-subtype-bag rng_times_zero rng_minus_zero intformless_wf int_formula_prop_less_lemma ge_wf less_than_wf subtract_wf fps-scalar-mul-one fps-exp-one int-to-ring-one mul_one_fps decidable__lt false_wf not-lt-2 less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel subtract-add-cancel add-subtract-cancel fps-exp-unroll fps-mul-comm rng_plus_wf fps-scalar-mul-rng-add rng_one_wf fps-add-comm int-to-ring-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality sqequalRule lambdaEquality independent_pairFormation lambdaFormation applyEquality imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination setElimination rename isect_memberEquality axiomEquality universeEquality dependent_functionElimination instantiate equalityUniverse levelHypothesis hyp_replacement applyLambdaEquality cumulativity intEquality unionElimination approximateComputation dependent_pairFormation int_eqEquality voidElimination voidEquality dependent_set_memberEquality addEquality intWeakElimination minusEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(X;r)].  \mforall{}[x:X].
        (df(x:=g)/dx  =  (df/dx(x:=g)*dg/dx)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-10_17_15
Last ObjectModification: 2018_05_19-PM-04_19_35

Theory : power!series


Home Index