Nuprl Lemma : fps-exp-one

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[f:PowerSeries(X;r)].  ((f)^(1) f ∈ PowerSeries(X;r)) supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-exp: (f)^(n) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q subtract: m
Lemmas referenced :  equal_wf squash_wf true_wf fps-exp-unroll less_than_wf iff_weakening_equal power-series_wf crng_wf deq_wf valueall-type_wf fps-mul_wf fps-exp-zero mul_one_fps
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache independent_isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination cumulativity isect_memberEquality axiomEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[f:PowerSeries(X;r)].    ((f)\^{}(1)  =  f)  supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_58_33
Last ObjectModification: 2017_07_26-PM-06_33_36

Theory : power!series


Home Index